Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; 19(6): 9-11, Nov. 2016. ilus
Article in English | LILACS | ID: biblio-1039747

ABSTRACT

Background: Marker-assisted introgression currently represents the most widely spread application of DNA markers as an aid to selection in plant breeding. New barley germplasm should be supplemented by genes that facilitate growth and development under stressful conditions. The homology search against known genes is a fundamental approach to identify genes among the generated sequences. This procedure can be utilized for SNP search in genes of predicted function of interest and associated gene ontology (GO). Results: Backcross breeding enhanced by marker selection may become a powerful method to transfer one or a few genes controlling a specific trait. In the study, the integrated approach of combining phenotypic selection with marker assisted backcross breeding for introgression of LTP2 gene, in the background of semi-dwarf spring barley cultivar, was employed. This study discusses the efficiency of molecular marker application in backcrossing targeted on the selected gene. Conclusions: BC6 lines developed in this study can serve as a unique and adequate plant material to dissect the role of LTP2 gene. Due to its role in lipid transfer, the LTP2 may be crucial in lipidome modification in response to abiotic stress.


Subject(s)
Selection, Genetic , Hordeum/genetics , Crosses, Genetic , Plant Breeding/methods , Genetic Markers , Polymorphism, Single Nucleotide , Inbreeding
2.
Electron. j. biotechnol ; 17(1): 2-2, Jan. 2014. ilus, tab
Article in English | LILACS | ID: lil-706516

ABSTRACT

Background The quality of wheat grain depends on several characteristics, among which the composition of high molecular weight glutenin subunits, encoded by Glu-1 loci, are the most important. Application of biotechnological tools to accelerate the attainment of homozygous lines may influence the proportion of segregated genotypes. The objective was to determine, whether the selection pressure generated by the methods based on in vitro cultures, may cause a loss of genotypes with desirable Glu-1 alleles. Results Homozygous lines were derived from six winter wheat crosses by pollination with maize (DH-MP), anther culture (DH-AC) and single seed descent (SSD) technique. Androgenetically-derived plants that originated from the same callus were examined before chromosome doubling using allele-specific and microsatellite markers. It was found that segregation distortion in SSD and DH-MP populations occurred only in one case, whereas in anther-derived lines they were observed in five out of six analyzed combinations. Conclusions Segregation distortion in DH-AC populations was caused by the development of more than one plant of the same genotype from one callus. This distortion was minimized if only one plant per callus was included in the population. Selection of haploid wheat plants before chromosome doubling based on allele-specific markers allows us to choose genotypes that possess desirable Glu-1 alleles and to reduce the number of plants in the next steps of DH production. The SSD technique appeared to be the most advantageous in terms of Mendelian segregation, thus the occurrence of residual heterozygosity can be minimized by continuous selfing beyond the F6 generation.


Subject(s)
Triticum/genetics , Chromosome Segregation , Seeds/genetics , In Vitro Techniques , Microsatellite Repeats , Zea mays , Alleles , Genotype , Glutens/analysis , Homozygote
SELECTION OF CITATIONS
SEARCH DETAIL